Multi-condition multi-objective optimization using deep reinforcement learning
نویسندگان
چکیده
A multi-condition multi-objective optimization method that can find Pareto front over a defined condition space is developed for the first time using deep reinforcement learning. Unlike conventional methods which perform at single condition, present learns correlations between conditions and optimal solutions. The exclusive capability of examined in solutions novel modified Kursawe benchmark problem an airfoil shape include nonlinear characteristics are difficult to resolve methods. with high resolution successfully determined each problem. Compared multiple operations single-condition conditions, based on learning shows greatly accelerated search by reducing number required function evaluations. An analysis aerodynamics performance airfoils optimally designed shapes confirms indispensable avoid significant degradation target varying flow conditions.
منابع مشابه
Multi-Objective Deep Reinforcement Learning
We propose Deep Optimistic Linear Support Learning (DOL) to solve highdimensional multi-objective decision problems where the relative importances of the objectives are not known a priori. Using features from the high-dimensional inputs, DOL computes the convex coverage set containing all potential optimal solutions of the convex combinations of the objectives. To our knowledge, this is the fir...
متن کاملA Multi-Objective Deep Reinforcement Learning Framework
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on a deep sea treasure environment indicate that the proposed approach is able to converge to the optimal Pareto solutions. ...
متن کاملMulti-Objective Reinforcement Learning
In multi-objective reinforcement learning (MORL) the agent is provided with multiple feedback signals when performing an action. These signals can be independent, complementary or conflicting. Hence, MORL is the process of learning policies that optimize multiple criteria simultaneously. In this abstract, we briefly describe our extensions to single-objective multi-armed bandits and reinforceme...
متن کاملMulti-Objective Service Composition Using Reinforcement Learning
Web services have the potential to offer the enterprises with the ability to compose internal and external business services in order to accomplish complex processes. Service composition then becomes an increasingly challenging issue when complex and critical applications are built upon services with different QoS criteria. However, most of the existing QoS-aware compositions are simply based o...
متن کاملWhy Multi-objective Reinforcement Learning?
We argue that multi-objective methods are underrepresented in RL research, and present three scenarios to justify the need for explicitly multi-objective approaches. Key to these scenarios is that although the utility the user derives from a policy — which is what we ultimately aim to optimize — is scalar, it is sometimes impossible, undesirable or infeasible to formulate the problem as single-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2022
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2022.111263